SCB

Aspects of Responsive Design for the Swedish Living Conditions Survey (LCS)

Peter Lundquist and Carl-Erik Särndal

CBS, Den Haag 2012

Outline

- Introduction
- About the Swedish LCS
- Measures and indicators for the data collection
- Experimental strategies

Introduction

Our work is based on:

- Balance indicators and distance measure: Särndal in JOS (2011)
- R-indicators by Schouten, Bethlehem et al. in the RISQ-project; <u>www.R-indicator.eu</u>
- Responsive design : Groves and Heeringa JRSS A (2006)
- Empirical results for the Swedish LCS 2009

Introduction: The Swedish background

- Clients require high response rate
- Chasing respondents is expensive
- Earlier studies of Swedish LFS, LCS and HF raise questions about the value of today's field work strategy
- Panel surveys have other needs (measures over time) than one-time surveys

LCS 2009

LCS is a telephone survey, the design is essentially a simple random sample (SRS) from the *Swedish RTP*; sample size n = 8,220.

- Response rate, ordinary field work (5 w): 60.4%
- Final response rate, after follow-up (+3,3w): 67.4%

The same data collection strategy is used in the follow-up.

The overall response rate

A probability sample s is drawn from the population U.

The inclusion probability of unit k is $\pi_k = \Pr(k \in s)$ with the design weight $d_k = 1/\pi_k$.

The response set is r; $r \subseteq s \subseteq U$

And the overall response rate is $P = \sum_{k} d_k / \sum_{k} d_k$

Relative difference: RDF

Three register variables (known for *s*) used as y-variables

Standard auxiliary vector (x-vector) of dimension = 8:

(Phone, High education, Four Age-groups, Property ownership, Swedish origin)

$$\hat{Y}_{CAL} = \sum_{r} d_k m_k y_k \qquad m_k = \left(\sum_{s} d_k \mathbf{x}_k\right) \left(\sum_{r} d_k \mathbf{x}_k \mathbf{x}_k'\right)^{-1} \mathbf{x}_k$$

$$\hat{Y}_{FUL} = \sum_{s} d_{k} y_{k}$$

$$RDF = 100(\hat{Y}_{CAL} - \hat{Y}_{FUL}) / \hat{Y}_{FUL}$$

The LCS 2009 data collection:

Progression of the response rate P (in per cent) and of RDF for three selected register variables. Computations are based on the standard x-vector.

			RDF		
Step in the data collection	100× <i>P</i>	Sickness benefits	Income	Employed	
Attempt 1	12.8	10.5	-0.05	-1.3	
Attempt 2	24.6	3.3	-1.1	-2.0	
Attempt 3	32.8	1.6	-0.4	0.2	
Attempt 8	53.0	1.0	2.4	2.4	
End ordinary field work	60.4	-0.9	3.3	2.9	
Final	67.4	-3.6	2.9	3.1	

Balance indicators

Matrix language is needed because of the multivariate nature of \mathbf{x}_k . Let $\mathbf{D} = \overline{\mathbf{x}}_r - \overline{\mathbf{x}}_s = (D_1, ..., D_j, ..., D_J)'$. Under perfect balance, $\mathbf{D} = \mathbf{0}$, the zero vector. But normally, $\mathbf{D} \neq \mathbf{0}$.

A univariate measure, of imbalance, is defined by the quadratic form

$$\mathbf{D}'\mathbf{\Sigma}_{s}^{-1}\mathbf{D} = (\overline{\mathbf{x}}_{r} - \overline{\mathbf{x}}_{s})'\mathbf{\Sigma}_{s}^{-1}(\overline{\mathbf{x}}_{r} - \overline{\mathbf{x}}_{s})$$

where $\bar{\mathbf{x}}_r = \sum_r d_k \mathbf{x}_k / \sum_r d_k$ and $\bar{\mathbf{x}}_s = \sum_s d_k \mathbf{x}_k / \sum_s d_k$ and the weighting matrix is $\mathbf{\Sigma}_s = \sum_s d_k \mathbf{x}_k \mathbf{x}_k' / \sum_s d_k$.

Increased mean differences D_j tend to increase $\mathbf{D}'\mathbf{\Sigma}_s^{-1}\mathbf{D}$.

Balance indicators

It can be shown (Särndal, 2011) that $0 \le \mathbf{D}' \mathbf{\Sigma}_{s}^{-1} \mathbf{D} \le Q - 1$ where Q = 1/P.

Hence, $(\mathbf{D}'\mathbf{\Sigma}_{s}^{-1}\mathbf{D})/(Q-1)$ measures lack of balance on a unit interval scale.

We examine several balance indicators measured on the unit interval scale and such that the value "1" implies perfect balance. The first is

$$BI_1 = 1 - \sqrt{\frac{\mathbf{D}'\mathbf{\Sigma}_s^{-1}\mathbf{D}}{Q - 1}}$$

Because $P(1-P) \le 1/4$, an alternative indicator also contained in the unit interval is

$$BI_2 = 1 - 2P\sqrt{\mathbf{D}'\mathbf{\Sigma}_s^{-1}\mathbf{D}}$$

SCB

Distance between resp. and non-resp.

The distance measure: $dist = [(\bar{\mathbf{x}}_r - \bar{\mathbf{x}}_{s-r})' \Sigma_s^{-1} (\bar{\mathbf{x}}_r - \bar{\mathbf{x}}_{s-r})]^{1/2}$

where $\overline{\mathbf{x}}_r = \sum_r d_k \mathbf{x}_k / \sum_r d_k$ and $\overline{\mathbf{x}}_{s-r} = \sum_{s-r} d_k \mathbf{x}_k / \sum_{s-r} d_k$ and the weighting matrix is $\mathbf{\Sigma}_s = \sum_s d_k \mathbf{x}_k \mathbf{x}_k' / \sum_s d_k$.

$$BI_1 = 1 - \sqrt{P(1-P)} \times dist$$
 , $BI_2 = 1 - 2P(1-P) \times dist$.

R-indicators

are based on the variance of estimated response probabilities $\hat{\theta}_k$ for $k \in s$:

$$R=1-2S_{\hat{\theta}}$$

where,

$$S_{\hat{\theta}}^2 = \sum_{s} d_k (\hat{\theta}_k - \overline{\hat{\theta}}_s)^2 / \sum_{s} d_k$$

If ordinary linear least squares is used estimates for $k \in s$ are $\hat{\theta}_k = \mathbf{x}_k' \mathbf{b}$

with
$$\mathbf{b} = (\sum_{s} d_k \mathbf{x}_k \mathbf{x}_k')^{-1} (\sum_{r} d_k \mathbf{x}_k)$$

Relationship with the balance indicators:

$$BI_1 = 1 - S_{\hat{\theta}} / \sqrt{P(1-P)}$$
 , $BI_2 = 1 - 2S_{\hat{\theta}}$

R-indicator

with logistic regression fit (see for example the RISQ-manal)

$$\hat{\theta}_{k,\log} = \exp(\mathbf{x}_k'\hat{\boldsymbol{\beta}})/[1 + \exp(\mathbf{x}_k'\hat{\boldsymbol{\beta}})] \text{ for } k \in s.$$

The (unadjusted) R-indicator is then

$$R = 1 - 2S_{\hat{\theta}, \log}$$

A biased adjusted version is also available (see RISQ)

Indicators computed on the LCS 2009 data collection

Progression of the response rate P (in per cent), the balance indicators Bl_1 , Bl_2 , R unadjusted and R adjusted, and the distance measure dist. Computations are based on the standard x-vector.

Step in data collection	100× <i>P</i>	BI ₁	BI_2	R unadj.	R adjusted	dist _{r nr}
Attempt 1	12.8	0.855	0.904	0.902	0.905	0.433
Attempt 2	24.6	0.802	0.829	0.829	0.831	0.460
Attempt 3	32.8	0.779	0.793	0.794	0.796	0.470
Attempt 8	53.0	0.751	0.752	0.758	0.760	0.499
End ordinary field work	60.4	0.738	0.744	0.752	0.754	0.536
Final	67.4	0.717	0.735	0.742	0.743	0.603

SCB

Imbalance – special case

The quadratic form $\mathbf{D}'\mathbf{\Sigma}_s^{-1}\mathbf{D}$ has a particularly useful expression when the vector \mathbf{x}_k is defined in terms of J mutually exclusive and exhaustive traits or characteristics.

The trait of unit k is then uniquely coded by an **x**-vector of the type $\mathbf{X}_k = (0,...,1,...,0)'$ (with a single entry "1").

Imbalance – special case

For trait j, let $W_{js} = \sum_{s_j} d_k / \sum_s d_k$ be that trait's share of s, and $P_j = \sum_{r_i} d_k / \sum_{s_i} d_k$ the response rate.

Then the **imbalance** is a sum of non-negative terms expressed as

$$\mathbf{D}' \mathbf{\Sigma}_{s}^{-1} \mathbf{D} = \sum_{j=1}^{J} C_{j} = \sum_{j=1}^{J} W_{js} \left(\frac{P_{j}}{P} - 1 \right)^{2}$$

We carried out several **experiments in retrospect** on the LCS 2009 data, each based on an **experimental data collection strategy** consisting of:

- A suitably chosen experimental x-vector with value known for all units k in the sample s
- One or more specified intervention points, with a stopping rule for each intervention point.

Our **experimental x-vector** was defined as the crossing of

- Education level (high, not high),
- Property ownership (owner, non-owner),
- Country of origin (Sweden, other).

Consequently, eight mutually exclusive and exhaustive groups.

First, we analyzed *the whole* LCS 2009 data set in terms of the experimental **x**-vector defined by

Education level × Property ownership × Country of origin

The objective was to see how the components C_j of $\mathbf{D} \Sigma^{-1} \mathbf{D}$ develop during the data collection.

Values of the eight terms C_j of $\mathbf{D}'\mathbf{\Sigma}_s^{-1}\mathbf{D}$ (multiplied by 100). Experimental x-vector defined by crossing of Education (high, not high), Property ownership (owner, non-owner) and Country of origin (Sweden, other).

0		4! -	$100 \times C_j$						
Group characteristic _		Ordinary fieldwork attempt				Follow-up attempt			
Education	Property ownership	Origin	1	5	12	End	1	4	Final
Not high	Non-owner	Abroad	1.49	1.44	1.26	1.23	1.25	1.16	1.18
Not high	Non-owner	Sweden	0.00	0.06	0.11	0.11	80.0	0.07	0.07
Not high	Owner	Abroad	0.06	0.01	0.00	0.00	0.00	0.00	0.00
Not high	Owner	Sweden	0.72	0.24	0.21	0.19	0.17	0.17	0.18
High	Non-owner	Abroad	1.28	0.39	0.29	0.26	0.25	0.23	0.22
High	Non-owner	Sweden	0.11	0.26	0.25	0.24	0.21	0.20	0.23
High	Owner	Abroad	0.18	0.01	0.03	0.03	0.03	0.02	0.04
High	Owner	Sweden	0.29	0.58	0.64	0.66	0.62	0.53	0.44
	100	$\times \mathbf{D}' \mathbf{\Sigma}_s^{-1} \mathbf{D}$	4.13	2.99	2.78	2.72	2.61	2.37	2.36

Then we carried out experiments in which data collection is stopped in groups which at some point achieve a "satisfactory" response rate.

In **Strategy 1** we used 65% as the target response rate.

Experimental Strategy 1

Response rates in per cent at three points in the LCS 2009 data collection

	Response rate in per cent						
Group characteris		tic	After 12	2 follow-	Final	_ Individuals	
Education	Property	Origin	calls	up calls		in sample	
	Ovnership						
No high	Non-owner	Abroad	37.5	41.8	44.6	847	
No high	Non-owner	Sweden	54.6	59.8	64.6	3210	
No high	Owner	Abroad	58.5	62.3	66.8	171	
No high	Owner	Sweden	63.0	67.6	73.2	2036	
High	Non-owner	Abroad	39.4	44.9	48.7	236	
High	Non-owner	Sweden	66.8	71.6	77.6	816	
High	Owner	Abroad	68.1	73.6	81.9	72	
High	Owner	Sweden	72.2	77.4	81.5	832	

Experimental strategy 1; the eight terms C_j of $\mathbf{D}'\mathbf{\Sigma}_s^{-1}\mathbf{D}$ (multiplied by 100) at three points in the data collection.

	Group charact	teristic	Value of $100 \times C_j$ at poin					
Education	Property ownership	Origin	Attempt 12 ordinary	Attempt 2 follow-up	Final			
Not high	Non-owner	Abroad	1.26	1.06	0.94			
Not high	Non-owner	Sweden	0.11	0.03	0.00			
Not high	Owner	Abroad	0.00	0.00	0.00			
Not high	Owner	Sweden	0.21	0.24	0.08			
High	Non-owner	Abroad	0.29	0.21	0.16			
High	Non-owner	Sweden	0.25	0.07	0.02			
High	Owner	Abroad	0.03	0.01	0.00			
High	Owner	Sweden	0.64	0.31	0.17			
		$100 \times \mathbf{D}' \mathbf{\Sigma}_s^{-1} \mathbf{D}$	2.78	1.93	1.39			

Experimental Strategy 1

Response rate (in per cent), balance indicator and distance measure. The computations are based on experimental x-vector.

Experimental Strategy	100× <i>P</i>	BI ₁	dist
After 12 calls	57.7	0.805	0.394
2 follow-up calls	61.5	0.824	0.361
Final	63.9	0.843	0.326

SCB

Experimental Strategies 2 and 3

Experimental strategy 2:

- Same x-vector,
- 60 % response gives 5 intervention points.

Experimental strategy 3:

- Same x-vector,
- 50% response gives 5 intervention points.

Experiments compared with full data

The experimental strategies compared with the actual LCS 2009: Response rate (in per cent), *RDF*, *Bl*₁, *dist* and reduction (in per cent) of the number of call attempts. Computations are based on the ordinary x-vector.

			RDF					
End of data collection	100× <i>P</i>	Sickness allowance	Income	Employed	BI ₁	dist	Reduction in %	
Actual 2009 LCS	67.4	-3.6	2.9	3.1	0.717	0.603	0.0	
Strategy 1	63.9	-1.6	2.7	3.0	0.765	0.489	8.2	
Strategy 2	58.9	-1.2	2.6	3.2	0.787	0.433	20.2	
Strategy 3	50.3	1.0	1.0	2.0	0.808	0.383	36.4	