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Content 

• ESM: Opportunities and methodological challenge 

 

• Latent Markov factor analysis (LMFA) 

 

• Simulation: Performance of LMFA 

 

• Application: Adolescents’ affect ratings in different contexts 
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Building blocks of Latent Markov Factor Analysis 

initial state probability  

𝜋 =  (1 3 , 1 3 , 1 3   

2) Factor analysis per state 

transition probability 

𝑃 = 
0.97 0.03
0.02 0.98

 T1 T2 

T1 T2 

observations defined by 
• multivariate Gaussian mixture models  
    depending on states 
• a state-specific intercept vector 𝜃𝑠 
• a state-specific covariance matrix 𝛴𝑠 
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1) Latent Markov Model: A latent class model that allows for transitions 



Simulation Study:  
How well does latent Markov factor analysis perform in 
recovering states and factor loadings?  
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Vermunt & Magidson (2013)  
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Medium LD: Difference was a Shifted loading  

Tucker’s 

congruence  

coefficient  
ϕ = .80  
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Low LD: Difference was an added cross-loading 
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Tucker’s 

congruence  

coefficient  
ϕ = .94  
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Loading Recovery  

Mean Tucker’s congruence coefficient over states and factors 

 
  𝜙(𝜦𝑓

𝑠𝑇,𝜦𝑓
𝑠𝑀 𝐹

𝑓=1
𝑆
𝑠=1

 𝐹𝑆𝑆
𝑠=1

=.98 (SD = 0.05) 

 

 

True Estimated 



Application 

• Affect measures of adolescents (12 Items) 
• Rated degree of : “I feel happy; energetic; angry;…” 

• Filled in the measurements in different contexts: 
 
 
 

• Remember the Challenge: The MM can change within a 
person over time  
• Artefacts  
• Substantive changes 

 

• There were indeed 2 states ! 
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Keijsers, Hillegers and Hiemstra (Grumpy or Depressed project, 2017) 



Step 1: Investigating the States 
Loading differences 
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State 1 State 2 



Intercept differences 
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Step 2: What do the individual changes 
between the states look like? 
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Step 3: How are the states related to the 
contexts? 
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Summarized: LMFA is an innovative 
approach… 

 
…that detects and models changes in MM over time 

• Can we control for artefacts? 

• Can we learn from substantive changes?  

 

…that shows which subjects and which time-points are comparable! 
safeguards valid conclusions  
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Thank you for your attention! 

Leonie V.D.E. Vogelsmeier 
l.v.d.e.vogelsmeier@uvt.nl 



Latent GOLD 

 

• Vermunt, J. K., & Magidson,J.(2013). Technical guide for Latent 
GOLD 5.0: Basic, advanced, and syntax. Belmont, MA: 
StatisticalInnovations. 

 

• Website: http://www.statisticalinnovations.com/ 
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Tilburg Experience Sampling Center 

• dr. L.G.M.T. Keijsers 

• dr. A.O.J. Cramer 

 

• Website: https://twitter.com/tilburgu_tesc?lang=en 
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